Abstract

BackgroundProtein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, however, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. Moreover, the often observed poor quality of mass spectra derived from phosphopeptides results frequently in uncertain database hits. Thus, several lines of evidence have to be combined for a precise phosphorylation site identification strategy.ResultsHere, a strategy is presented that combines enrichment of phosphoproteins using a technique termed metaloxide affinity chromatography (MOAC) and selective ion trap mass spectrometry. The complete approach involves (i) enrichment of proteins with low phosphorylation stoichiometry out of complex mixtures using MOAC, (ii) gel separation and detection of phosphorylation using specific fluorescence staining (confirmation of enrichment), (iii) identification of phosphoprotein candidates out of the SDS-PAGE using liquid chromatography coupled to mass spectrometry, and (iv) identification of phosphorylation sites of these enriched proteins using automatic detection of H3PO4 neutral loss peaks and data-dependent MS3-fragmentation of the corresponding MS2-fragment. The utility of this approach is demonstrated by the identification of phosphorylation sites in Arabidopsis thaliana seed proteins. Regulatory importance of the identified sites is indicated by conservation of the detected sites in gene families such as ribosomal proteins and sterol dehydrogenases. To demonstrate further the wide applicability of MOAC, phosphoproteins were enriched from Chlamydomonas reinhardtii cell cultures.ConclusionA novel phosphoprotein enrichment procedure MOAC was applied to seed proteins of A. thaliana and to proteins extracted from C. reinhardtii. Thus, the method can easily be adapted to suit the sample of interest since it is inexpensive and the components needed are widely available. Reproducibility of the approach was tested by monitoring phosphorylation sites on specific proteins from seeds and C. reinhardtii in duplicate experiments. The whole process is proposed as a strategy adaptable to other plant tissues providing high confidence in the identification of phosphoproteins and their corresponding phosphorylation sites.

Highlights

  • Protein phosphorylation is accepted as a major regulatory pathway in plants

  • MOAC enrichment of phosphoproteins Proteins were extracted with phenol and enriched for phosphoproteins using metaloxide affinity chromatography (MOAC) [18]

  • Bands corresponding to enriched seed proteins with a strong signal in the phosphostain were excised, digested with trypsin, and analysed by mass spectrometry

Read more

Summary

Introduction

Protein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. In plants several studies on the proteome of different developmental stages have been conducted [1]. Seed dormancy plays a crucial role in the life cycle of plants and its proteome reflects the metabolic processes during this important developmental period. Protein phosphorylation has been widely described as a major regulatory protein posttranslational modification influencing many important processes in living cells [2,3,4]. The study of protein phosphorylation confronts the researcher with several hurdles

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call