Abstract

Simple SummaryThis study shows for the first time the variation of the salivary proteome in horses with acute abdominal disease (AAD) compared with healthy horses through a high-throughput proteomic approach. A total of 118 proteins were identified, and 17 showed significant changes between the two groups. The changes observed in proteins were closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa, and one salivary protein (lactoferrin) was successfully verified. These results may increase the background and knowledge of saliva composition in horses with AAD and further understanding of the physiopathological changes occurring in the organism in this disease.The aim of this study was to investigate the changes in the salivary proteome in horses with acute abdominal disease (AAD) using a tandem mass tags (TMT)-based proteomic approach. The saliva samples from eight horses with AAD were compared with six healthy horses in the proteomic study. Additionally, saliva samples from eight horses with AAD and eight controls were used to validate lactoferrin (LF) in saliva. The TMT analysis quantified 118 proteins. Of these, 17 differed significantly between horses with AAD and the healthy controls, 11 being downregulated and 6 upregulated. Our results showed the downregulation of gamma-enteric smooth muscle actin (ACTA2), latherin isoform X1, and LF. These proteins could be closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa. In addition, there was an upregulation of mucin 19 (MUC19) and the serine protease inhibitor Kazal-type 5 (SPINK5) associated with a protective effect during inflammation. The proteins identified in our study could have the potential to be novel biomarkers for diagnosis or monitoring the physiopathology of the disease, especially LF, which decreased in the saliva of horses with AAD and was successfully measured using a commercially available immunoassay.

Highlights

  • There is a growing interest in saliva as a biological sample since it can reflect physiological changes in the organism and be a possible source of biomarkers for diagnosing and monitoring diseases [1]

  • A proteomic analysis using tandem mass tags (TMT) as a labelling reagent was performed in the saliva of horses with abdominal disease (AAD) and healthy horses, followed by statistical analysis

  • Seventeen proteins were significantly altered in horses with AAD, with the most downregulated (ACTA2, latherin isoform X1, and LF) being closely related to an impaired primary immune defense and antimicrobial capacity in the mucosa

Read more

Summary

Introduction

There is a growing interest in saliva as a biological sample since it can reflect physiological changes in the organism and be a possible source of biomarkers for diagnosing and monitoring diseases [1]. Cortisol is probably the most commonly measured analyte in saliva, being used as a biomarker of stress [3]. Acute abdominal disease (AAD), known as colic, is a condition that affects the equine population and is characterized by signs of abdominal pain [5]. The main causes of AAD are intestinal obstruction or strangulation, non-strangulating infarction, enteritis, peritonitis, and ileus [6]. It is one of the most prevalent diseases in horses (it affects up to 10% according to some reports) and a major cause of morbidity and mortality in the species [6]. Certain breed predilections for specific types of colic have been suggested

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.