Abstract

We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call