Abstract

Grain dormancy of wheat is closely associated with grain color: red-grained lines show higher dormancy than white-grained lines. The production of red pigments is regulated by R-1, Tamyb10 gene. However, the relation between grain color and dormancy remains unknown. For this study, we generated transgenic lines which were introduced a DNA fragment containing Tamyb10-D1 gene and its a 2 kb promoter including the 5′ untranslated region into white-grained wheat. Transgenic lines showed red-grained and higher dormant traits. Contents of plant hormones and gene expression of embryos at 30 days after pollination were examined in a wild type and a transgenic line. No differences were observed in the contents of plant hormones, but several genes are differentially expressed between these lines. One differentially expressed gene, TaLTP2.128, is a member of non-specific lipid transfer proteins. It was expressed higher in white grains than in red grains. A putative amino acid sequence showed similarity to that of OsHyPRP5, which is identified as QTL controlling low-temperature germinability in rice. Expression of TaLTP2.128 was increased by grain imbibition. The increasing levels were higher not only in other white-grained lines, but also in non-dormant red-grained lines. TaLTP2.128 was expressed at a quite early stage of germination. These study findings indicate that Tamyb10 regulates dormancy release by the modification of TaLTP2.128 acting as trigger of germination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call