Abstract

In wireless industrial networks, the information of time-sensitive control systems needs to be transmitted in an ultra-reliable and low-latency manner. This letter studies the resource allocation problem in finite blocklength transmission, in which the information freshness is measured as the age of information (AoI) whose maximal AoI is characterized using extreme value theory (EVT). The considered system design is to minimize the sensors' transmit power and transmission blocklength subject to constraints on the maximal AoI's tail behavior. The studied problem is solved using Lyapunov stochastic optimization, and a dynamic reliability and age-aware policy for resource allocation and status updates is proposed. Simulation results validate the effectiveness of using EVT to characterize the maximal AoI. It is shown that sensors need to send larger-size data with longer transmission blocklength at lower transmit power. Moreover, the maximal AoI's tail decays faster at the expense of higher average information age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.