Abstract

The limited spectrum resources inevitably incur the spectrum sharing among coexisting industrial wireless networks (IWNs), and multiple coexistence IWNs form a heterogeneous environment. An effective resource allocation thus plays a crucial role in coordinating the efficient operations of multiple IWNs. Existing works only study the constrained coexistence problem among specified types of networks with a limited number of nodes over one single channel. In this paper, we investigate a general coexistence problem over multiple channels among arbitrary types of networks with line topologies, and the number of nodes in each network is also arbitrary. We rigorously analyze theoretical scheduling latency of this general coexistence problem, then we propose an algorithm to attain the optimal result. The presented Coexisting Line topology Networks Resource Allocation (CLNRA) algorithm consists of two phases. In the inter-network resource allocation phase, non-overlapped channels are allocated to each network according to the corresponding transmission priority. While in the intra-network resource allocation phase, we filter out the nodes that may generate continuous empty buffers so as to enhance the resource utilization ratio. We also verify the effectiveness of the CLNRA algorithm through extensive simulations. Evaluation results show that the CLNRA algorithm can attain the theoretical optimal result in 99:3% cases, and it has obvious superiorities on resource utilization ratio and scheduling latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.