Abstract

Traditional explicit schemes such as the Euler-Maruyama, Milstein and stochastic Runge-Kutta methods, in general, result in strong and weak divergence when solving stochastic differential equations (SDEs) with super-linearly growing coefficients. Motivated by this, various modified versions of explicit Euler and Milstein methods were constructed and analyzed in the literature. In the present paper, we aim to introduce a family of explicit tamed stochastic Runge-Kutta (TSRK) methods for commutative SDEs with super-linearly growing drift and diffusion coefficients. Strong convergence rates of order 1.0 are successfully identified for the proposed methods under certain non-globally Lipschitz conditions. Compared to the Milstein-type methods involved with derivatives of coefficients, the newly proposed derivative-free TSRK methods can be computationally more efficient. Numerical experiments are reported to confirm the expected strong convergence rate of the TSRK methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call