Abstract
This paper concerns the stochastic Runge-Kutta (SRK) methods with high strong order for solving the Stratonovich stochastic differential equations (SDEs) with scalar noise. Firstly, the new SRK methods with strong order 1.5 or 2.0 for the Stratonovich SDEs with scalar noise are constructed by applying colored rooted tree analysis and the theorem of order conditions for SRK methods proposed by Rosler (SIAM J. Numer. Anal. 48(3), 922---952, 2010). Secondly, a specific SRK method with strong order 2.0 for the Stratonovich SDEs whose drift term vanishes is proposed. And another specific SRK method with strong order 1.5 for the Stratonovich SDEs whose drift and diffusion terms satisfy the commutativity condition is proposed. The two specific SRK methods need only to use one random variable and do not need to simulate the multiple Stratonovich stochastic integrals. Finally, the numerical results show that performance of our methods is better than those of well-known SRK methods with strong order 1.0 or 1.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.