Abstract
SUMMARYResearch backgroundFrom ancient times plants have been used for medicinal purposes against various ailments. In the modern era, plants are a major source of drugs and are an appealing drug candidate for the anticancer therapeutics against various molecular targets. Here we tested methanolic extract of dry leaves of Tamarix articulata for anticancer activity against a panel of hepatocellular carcinoma cells.Experimental approachCell viability of hepatocellular carcinoma cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after a dose-dependent treatment with the extract of T. articulata. Phase-contrast microscopy and 4՛,6-diamidino-2-phenylindole (DAPI) staining served to analyse cellular and nuclear morphology. Immunoblotting was performed to determine the expression of proteins associated with autophagy, apoptosis and cell cycle. However, flow cytometry was used for the quantification of apoptotic cells and the analysis of cells in different phases of the cycle after the treatment with various doses of T. articulata. Additionally, acridine orange staining and 2՛,7՛-dichlorofluorescein diacetate (DCFH-DA) dye were used to analyse the quantification of autophagosomes and reactive oxygen species.Results and conclusionOur results demonstrate that T. articulata methanolic extract exhibits promising antiproliferative activity with IC50 values (271.1±4.4), (298.3±7.1) and (336.7±6.1) µg/mL against hepatocellular carcinoma HepG2, Huh7D12 and Hep3B cell lines, respectively. Mechanistically, we found that T. articulata methanolic extract induces cell death by activating apoptosis and autophagy pathways. First, T. articulata methanolic extract promoted autophagy, which was confirmed by acridine orange staining. The immunoblotting analysis further confirmed that the extract at higher doses consistently induced the conversion of LC3I to LC3II form with a gradual decrease in the expression of autophagy substrate protein p62. Second, T. articulata methanolic extract promoted reactive oxygen species production in hepatocellular carcinoma cells and activated reactive oxygen species-mediated apoptosis. Flow cytometry and immunoblotting analysis showed that the plant methanolic extract induced dose-dependent apoptosis and activated proapoptotic proteins caspase-3 and PARP1. Additionally, the extract triggered the arrest of the G0/G1 phase of the cell cycle and upregulated the protein expression of p27/Kip and p21/Cip, with a decrease in cyclin D1 expression in hepatocellular carcinoma cells.Novelty and scientific contributionThe current study demonstrates that T. articulata methanolic extract exhibits promising anticancer potential to kill tumour cells by programmed cell death type I and II mechanisms and could be explored for potential drug candidate molecules to curtail cancer in the future.
Highlights
Hepatocellular carcinoma (HCC) is the predominant primary cancer in most countries and seventh most frequent cancer across the globe [1]
Our results demonstrate that T. articulata methanolic extract exhibits promising antiproliferative activity with IC50 values (271.1±4.4), (298.3±7.1) and (336.7±6.1) μg/mL against hepatocellular carcinoma HepG2, Huh7D12 and Hep3B cell lines, respectively
The plant methanolic extract triggered the arrest of the G0/G1 phase of the cell cycle and increased the protein expression of cyclin-dependent kinase inhibitor 1B (p27/ Kip), encoded by the CDKN1B gene and cyclin-dependent kinase inhibitor 1 (p21/Cip), encoded by the CDKN1A gene, with a decrease in the expression of cyclin D1 in Hep2G cells
Summary
Hepatocellular carcinoma (HCC) is the predominant primary cancer in most countries and seventh most frequent cancer across the globe [1]. HCC is the second most lethal cancer-associated mortality in the world, with an annual rate of around 1.2 million deaths, mainly in the under-developing and developing countries of East Asia and Africa [2]. Incidence of HCC varies according to gender, age, ethnicity and geographical distribution. The majority (more than 80 %) of HCC cases occur in African and East Asian countries, with an incidence rate of more than 20 people in 100 000 individuals. Several etiological factors that have a casual association with HCC are chronic viral infections such as hepatitis B virus (HBV) or hepatitis C virus (HCV), frequent exposure to aflatoxin B1, liver cirrhosis due to alcohol abuse, and non-alcoholic fatty liver [4]. Patients with early disease are often asymptomatic and diagnosed at a late stage when the disease is untreatable [5]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have