Abstract
Taşkınların duyarlılık ve risk sahasının tespitinde son dönemlerde kullanılan makine öğrenimi yöntemleri oldukça uyumlu sonuçlar vermektedir. Literatürdeki çoğu çalışmada görüldüğü üzere taşkın yaşanan havzanın veri bulunan ve afet yaşandığı bilinen bir kısmından yola çıkılarak taşkın tetikleyici parametrelerle havzanın tahmin edilmesini istenen veya veri eksikliği bulunan bir kısmı tahmin edilmektedir. Ancak bahse konu bu çalışmaların en büyük eksikliği hiçbir verisi bulunmayan havzaların tahmin olanağının olmamasıdır. İkinci husus ise makine öğrenim yöntemlerinin aynı havza içerisindeki tahminlerde aşırı öğrenme problemi oluşturmasıdır. Bu çalışmada veri bulunmayan havzaların tahmininde farklı havzaların kullanımı incelenmiştir. Bu amaçla Artvin il sınırları içinde 2009, 2015, 2020 ve 2021 yıllarında meydana gelen 4 adet taşkın kullanılmıştır. Çalışmada makine öğrenimi yöntemlerinden Rastgele Orman metodu kullanılmıştır. Yöntemin seçiminde, literatürde oldukça yüksek doğruluk değerlerine ulaşan çalışmalar olması ve taşkın gibi karmaşık olaylarda olay örgüsünü iyi analiz etmesi etkili olmuştur. Bu çalışmada rastgele noktalardan seçilen 1490 noktasal veri ile (2009, 2015 ve 2020 afetlerinden alınan) eğitim yapılmış ve 560 test verisi (2021 afeti ) tahmin edilmiştir. Çalışmanın doğrulaması 5 adet doğrulama yöntemleri (AUC, ACC, F, P, R ve F-Score) kullanılarak gerçekleştirilmiştir. Eğitim ve test verilerindeki doğruluk değerleri %90 düzeyinde tespit edilmiştir. Sonuçlar incelendiğinde 2021 yılında yaşanan afetin Rastgele Orman metodu ile tahmini, gerçek afet sahasına oldukça yakın sonuçlar vermiştir. Bulgular, taşkın afetinin önceden tahmin edilmesinde, havza planlamaları amacıyla oluşturulan havzanın risk ve duyarlılık haritalarının oluşturulmasında veri eksikliği bulunması durumunda havzalar arası tahminlerin başarısını göstermektedir. Metotların gelişimi ve örneklem sayısının arttırılması ile bu alanda iyi sonuçlar alınabileceği ve afetlerle mücadele konularında kullanılabileceği görülmektedir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.