Abstract
Dynamical X-ray diffraction simulations from crystals with surface undulations are reported. The Takagi-Taupin equations are applied and used to derive results in good agreement with experimental data reported in a separate paper [Macrander, Pereira, Huang, Kasman, Qian, Wojcik & Assoufid (2020). J. Appl. Cryst. 53, 789-792]. The development of Uragami [J. Phys. Soc. Jpn, (1969), 27, 147-154] is followed. Although previous work by Olekhnovich & Olekhnovich [Acta. Cryst. (1980), A36, 22-27] treated a crystal in the shape of a round cylinder, there do not seem to be any reports of previous dynamical X-ray diffraction treatments specifically for surface undulations. The significance of the present work is that it bridges the diffraction treatment of more classical dynamical diffraction theory, which assumes a flat surface, and the simple kinematic diffraction theory. The kinematic theory has, to date, been the primary means of simulating X-ray diffraction from surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.