Abstract
In this paper a unified approach is presented for controlling chaos in nonlinear partial differential systems by a fuzzy control design. First almost all known chaotic partial differential equation systems are represented by Takagi-Sugeno fuzzy model. For investigating design procedure, Kuramoto-Sivashinsky (K-S) equation is selected. Then, all linear subsystems of K-S equation are transformed to ordinary differential equation (ODE) systems by truncated Fourier series of sine-cosine functions. By solving Riccati equation for each ODE systems, parallel stabilizing feedback controllers are determined. Finally, a distributed fuzzy feedback for K-S equation is designed. Numerical simulations are given to show that the distributed fuzzy controller is very easy to design, efficient, and capable to extend.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have