Abstract

Cellulose acetate (CA) composite membranes are tailored for potential gas-transportation and antibacterial activity by incorporating various ratios (0-8wt. %) of zeolite-CuO (10:1, ZC) composite. The aim behind this is to develop an anti-biofouling membrane with enhanced CO2permeation and selection properties. In situ coprecipitation route is adopted to synthesize ZC that imparted morphological, structural, thermal, and performance characteristics of membranes synthesized by solution casting mechanism. FESEM analysis revealed, pores size transformed from 1µm to 1.4 nm as observed in M0 (virgin) and M4 (8wt. % ZC) membranes, respectively. The existence and linkages of impregnated ZC in the developed membranes are verified by FTIR investigations. TGA-tested thermally endured membranes are tested for gas permeation/selectivity. In comparison to virgin CA membrane, three folds enhancements in CO2permeation and two folds in CO2/N2selectivity are observed. Membranes are also evaluated for antibacterial test against ‘gram-negative bacteria’ elucidates that increasing ZC content in composite membranes exhibit remarkable results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call