Abstract

We demonstrate a novel form of transfer characteristics in substrate engineered MoS2 field effect transistors. Robust hysteresis with stable threshold voltages and a large gate voltage window is observed, which is suppressed at low temperatures. We analyse the dependence of the device characteristics on gate voltage range, gate stressing and sweep rates. We infer that the hysteresis originates from artificially created charged traps near the MoS2-SiO2 interface. These charge traps act as long range Coulomb scatterers and are screened at high carrier densities. The hysteresis is strongly suppressed in measurements on wafers devoid of the substrate treatment, providing a new extrinsic route to carefully tune the transfer characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.