Abstract

In this study, we perform a theoretical investigation using the density functional tight-binding (DFTB) approach for the structural analysis and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles (NPs). Our results show that the number of Ti-O bonds is greater than that of O-O, while the number of Ti-Ti bonds is fewer. Thus, large amounts of O atoms prefer to connect to Ti atoms. The increase in the temperature of the NPs contributes to an increase in the interaction of Ti–O bonding, but a decrease in the O-O bonding. The segregation of Ti and O atoms shows that Ti atoms tend to co-locate at the center, while O atoms tend to reside on the surface. Increasing temperature causes a decrease of the bandgap from 3.59 to 2.62 eV for the brookite phase, which is much more energetically favorable compared to the bulk, while it could increase the bandgap from 3.15 to 3.61 eV for anatase phase. For three-phase TiO2 NPs, LUMO and Fermi levels decrease. The HOMO level of anatase phase NP decreases, but it increases for brookite and rutile phase TiO2 nanoparticles. An increase in the temperature contributes to the stabilization of anatase phase TiO2 NP due to a decrease in the HOMO energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.