Abstract

The construction of superstable metal-organic frameworks (MOFs) for selective gas uptake is urgently demanded but remains a great challenge. Herein, a unique bifunctional deformed [Ga3O(COO)6] inorganic secondary building unit (SBU) generated from the desymmetrical evolution of typical triangular prismatic trinuclear cluster was first introduced, which was extended by an isosceles triangular organic linker to produce a robust Ga-MOF (SNNU-63). Remarkably, SNNU-63 can stabilize in water at 25 °C for 96 h and at 80 °C for more than 24 h, which surpasses nearly all other Ga-MOFs. The combined effects of open metal sites and hydrophobic pore environment provided by deformed [Ga3O] SBUs render SNNU-63 with high C2H2 storage capacity and efficient C2H2 and natural gas purification performance. The ideal adsorbed solution theory calculation, column breakthrough tests, and grand canonical Monte Carlo simulations demonstrate that SNNU-63 is a potential material for addressing the challenge of C2H2/CO2 and C2H2/CH4 mixture separation under ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.