Abstract

Benefiting from their high surface areas, excellent conductivity, and environmental-friendliness, porous carbon nanospheres (PCSs) are of particular attraction for the anodes of lithium-ion batteries (LIBs). However, the regulation of carbon nanospheres with controlled pore distribution and graphitization for delivering high Li+ storage behavior is still under investigation. Here, we provide a facile approach to obtain PCSs with different microstructures via modulating the carbonization temperatures. With the processing temperature of 850 °C, the optimized PCSs exhibit an increased surface area, electrical conductivity, and enhanced specific capacity (202 mA h g-1 at 2 A g-1) compared to the PCSs carbonized at lower temperatures. Additionally, PCSs 850 provide excellent cyclability with a capacity retention of 83% for 500 cycles. Such work can pave a new pathway to achieve carbon nanospheres with excellent performances in LIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call