Abstract

A novel method based on hot press sintering was proposed to fabricate the Al/Ti laminated composite, and the effects of sintering parameters on microstructure, interfacial structure, and mechanical properties were thoughtful examined. The results showed that insufficient sintering caused obvious voids and cracks at Al/Ti interface. With the increase of temperature or holding time, a good metallurgical bonding without defects was achieved, and both the recrystallization fraction and grain size of α phase in Ti layer increased, accompanied by the transformation of α to β phase and growth of intermetallic phase. The microstructure variation of Al layer is not evident with changing the sintering parameters. Due to the relatively low formation energy, the nanoscale TiAl3 phase with massive stacking faults formed at Al/Ti interface, and lots of dislocations existed at Al layer near the interface. The voids and cracks formed at Al/Ti interface led to the premature failure of laminate. On the basis of the metallurgical bonding and small TiAl3 phase, the high fraction and texture intensity of α phase were the dominated strengthening factors. Moreover, the back stress generated at Al/Ti interface contributes to an extra strengthening. The superior mechanical properties of Al/Ti laminate with a tensile strength of 670.9 MPa and a fracture strain of 0.33 were obtained with the sintering temperature of 600 °C and holding time of 2 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call