Abstract

Al2O3-SiCw toughened ceramic tools play vital role in high-speed machining of nickel-based superalloys due to their superior mechanical properties. Herein, owing to synergistic toughening mechanism, α-Si3N4 particles are employed as reinforcement phase into Al2O3-SiCw ceramic composite to optimize mechanical properties of Al2O3-SiCw ceramic tools. Moreover, the influence of Si3N4 content and sintering parameters on microstructure and mechanical properties of Al2O3-20 vol%SiCw ceramic tool material is systematically investigated. Results reveal that appropriate amount of Si3N4 particles is required to effectively increase the density of Al2O3-SiCw ceramic composites. The presence of Si3N4 particles leads to formation of novel β-sialon phase during hot-press sintering, which effectively enhances fracture toughness and flexural strength of Al2O3-SiCw ceramic composites. It is observed that grain size of newly formed β-sialon phase is extremely sensitive to hot-pressing sintering conditions. The degree of chemical transformation of α-Si3N4 into Si6-zAlzOzN8-z (β-sialon) and z-value of Si6-zAlzOzN8-z are significantly influenced by sintering temperature. Overall, Al2O3-20 vol%SiCw-15 vol%Si3N4 ceramic tool material, with 1.5 vol%Y2O3-0.5 vol%La2O3-0.5 vol%CeO2 (YLC) sintering additive, rendered optimal mechanical properties after sintering at 1600 °C under 32 MPa for 30 min. Improved mechanical performance can be ascribed to synergistic toughening and strengthening influence of whiskers and particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call