Abstract

Integrating diversified functionalities within a single aperture is crucial for microwave and optics-integrated devices. To date, research on this issue suffers from restricted bifunctionality, inadequate efficiency, and the limitation of extending to manipulate full-space wave. Here, we propose a general paradigm to achieve full-space multifunctional integration via tailoring the excited and cutoff states of spoof surface plasmon polaritons (SSPPs). A plasmonic meta-atom consisting of judiciously arranged metallic strips is used to excite and cut off the SSPP mode with uniaxially anisotropic characteristics. By shaping the topological structure of the meta-atom, the transmission and reflection phases are arbitrarily controlled at each pixel. Accordingly, the cross-placed meta-atom arrays can be designed to achieve independent phase profiles for x-/y-polarized transmission/reflection waves through dispersion engineering. A metamaterial with quadruple functionalities of backward beams scattering/anomalous reflection and electromagnetic transmission focusing/vortex is designed and fabricated as a proof-of-principle to reveal flexible manipulation. Both simulation and experimental verification are carried out in microwave frequency to demonstrate the feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.