Abstract
The growing demand for advanced solid-state lithium metal batteries has attracted considerable attention to the development of garnet-based membranes, known for their high ionic conductivity and superior electrochemical stability. Among the fabrication methods for garnet-based membranes, the tape-casting method is recognized as a mature and widely applied process, characterized by its simplicity, low cost, and suitability for large-scale production. In this review paper, we provide a comprehensive summary of this topic, emphasizing the intricate interplay among material properties, processing parameters, and membrane performance. We discuss key challenges in creating dense and porous garnet membranes, including controlling lithium volatilization, optimizing pore size, and maintaining high mechanical strength. We also evaluate emerging strategies for interface engineering and integration with other fabrication techniques, offering insights into scalability and environmental considerations of the tape-casting process. This review is a valuable resource for researchers seeking to advance solid-state lithium metal batteries through innovative tape-casting methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.