Abstract
The covalent functionalization of 2D crystals is an emerging route for tailoring the electronic structure and generating novel phenomena. Understanding the influence of ligand chemistry will enable the rational tailoring of their properties. Through the synthesis of numerous ligand-functionalized germanane crystals, we establish the role of ligand size and electronegativity on functionalization density, framework structure, and electronic structure. Nearly uniform termination only occurs with small ligands. Ligands that are too sterically bulky will lead to partial hydrogen termination of the framework. With a homogeneous distribution of different ligands, the band gaps and Raman shifts are dictated by their relative stoichiometry in a pseudolinear fashion similar to Vegard’s law. Larger and more electronegative ligands expand the germanane framework, thereby lowering the band gap and Raman shift. Simply by changing the identity of the organic ligand, the band gap can be tuned by ∼15%, highlighting the po...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have