Abstract

The present study aims to reveal the effectiveness of grit blasting when modifying the surface properties of a Ti6Al4V alloy deteriorated due to shot peening. Ti6Al4V samples shot-peened under different parameters were grit-blasted (at impingement angles of 30° and 90°, blasting pressures of 1.5 bar and 3 bar). Grit blasting proved to be an effective way of tailoring the surface topography as the surface roughness of shot-peened samples (approx. 10 µm) declined to approx. 2 µm. The surface modifications mainly occurred via micro-ploughing and micro-cutting wear mechanisms, indicating that grit blasting at 30° was more favourable than at 90° for modifying the deteriorated surface properties after shot peening. Shot-peened samples behaved similarly to mirror-polished unpeened samples during grit blasting, showing that the modified surface and subsurface properties obtained via shot peening have an insignificant effect on grit blasting of the alloy. A quantitative analysis of the area covering the embedded particles on the surface of the alloy due to grit blasting showed that the area almost doubled when the alloy was grit blasted at 90° compared to 30°, highlighting an excessive amount of embedding, which would be critical when surface decontamination is important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.