Abstract
The design of materials with intriguing electronic properties is crucial for advancing nanoscale technologies, where precise control over atomic structure and electronic behavior is essential. Metal-encapsulating silicon cage superatoms (SAs) provide a new paradigm for molecular-scale material design, allowing fine-tuning of both structure and electronic characteristics. The formation of superatoms mimicking halogens, noble gases, and alkali metals has been well-studied, particularly with M@Si16, where early transition metals from groups 3 to 5 stabilize within a Si16 cage, achieving a 68-electron configuration. For late transition metals with excess electrons, a Si15 cage offers enhanced stability by fulfilling the 68-electron rule with one fewer Si atom. This research synthesizes Si15 cage-SAs with rhenium (Re) from group 7 and iridium (Ir) from group 9 on p-type and n-type organic substrates. The stability of Re@Si15 and Ir@Si15 is evaluated via oxidative reactivity with X-ray photoelectron spectroscopy and theoretical calculations, including osmium (Os) from group 8. Re@Si15-, Os@Si150, and Ir@Si15+ exhibit superatomic behaviors similar to halogens, noble gases, and alkali metals due to the 68-electron shell closure. Among them, Re@Si15- on p-type organic substrates shows superior electronic and geometric properties. These findings advance our understanding of M@Sin systems for transition metals, addressing longstanding questions about their properties at n = 15 and 16.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.