Abstract
In this research work, we have incorporated paramagnetic Cu2+ and diamagnetic Cd2+ cations in spinel ferrites. By adjusting the concentrations of Cu2+ and Cd2+, it is possible to achieve a balance between enhanced electrical conductivity, desired magnetic properties, and suitable structural characteristics for applications in high-frequency devices, magnetic sensors, and electromagnetic interference (EMI) suppression through a synergistic effect. The sol-gel auto-combustion method was employed to synthesize Cd²⁺ and Cu²⁺ co-doped Ni0.5Zn0.5-x-yCuxCdyFe2O4 (x = y = 0.0, 0.05, 0.1, 0.15, 0.2) ferrite nanoparticles. Structural, morphological-compositional, functional, and magnetic properties of the nanoparticles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The XRD results confirmed the single-phase spinel structures with lattice constants increasing with higher dopant concentrations. The average crystallite sizes were found in the range of 38.14 - 42.68 nm and lattice constants in the range of 8.389 - 8.423 Å. Morphological analysis revealed agglomeration, consistent with the stoichiometric proportions during synthesis. There is a decreasing trend in nanograin sizes in the range of 40 to 73 nm with the concentration. FT-IR spectra verified the spinel structures through characteristic absorption bands around 600 cm⁻¹ and 400 cm⁻¹. Magnetic measurements indicated a decrease in saturation magnetization with increasing dopant levels indicating their potential use in electromagnetic wave absorption and magnetic memory devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.