Abstract
AbstractMg substituted cobalt ferrite spinel powder samples with the general formula MgxCO1-xFe2O4(x = 0 to 0.25) were synthesized chemically through sol-gel method and annealed at 1100 °C for 2 h. They were initially screened for the structural and morphological properties by X-ray diffraction and field emission scanning electron microscopy, respectively. Vibrational properties of the samples were studied by Raman and infrared spectroscopies. X-ray diffraction confirmed the formation of single pure or near-pure phase with cubic spinel structure for all the samples with expected occupancy values. The field emission scanning electron microscopy revealed a decrease in the particle size with an increase in Mg concentration. Both structural and magnetic properties of the samples were characterized using Mössbauer spectroscopy while the magnetic properties were studied using vibrating sample magnetometry. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions were confirmed from the Mössbauer spectroscopy analysis. Saturation magnetization and coercivity values can be explained based on the Slater-Pauling curve. The magnetometry results showed a decrease in saturation magnetization of the samples with increase in Mg concentration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.