Abstract
Highly (l00)-oriented Ni-doped Na0.5Bi0.5TiO3 (NBTNi) thin films with different A-site cation nonstoichiometry were deposited on the LaNiO3 (100)/Si substrates. We find that low levels of Na/Bi nonstoichiometry in the original composition of NBTNi films have obvious influence on the crystal structure and ferro-/dielectric properties. Na deficiency or Bi excess can lower the leakage current compared to the stoichiometric sample due to the decreased oxide-site vacancies. However, the mechanisms for the two types of films are different. That is, the mobile oxygen vacancies are tied by the Na vacancies in Na deficiency film whereas the formation of oxygen vacancies is suppressed for Bi-rich film. A good combination of ferroelectric property (Pr = 22.7 μC/cm2) and dielectric property (εr = 360 and tan δ = 0.11) can be achieved in Bi-rich NBTNi (Na0.5Bi0.54TNi) film. Besides, the effect of voltage and frequency on the capacitance and dielectric tunability for the Na0.5Bi0.54TNi film is investigated solely. These results show that NBT-based thin film is quite flexible in A-site nonstoichiometry, which provides a broad space for performance improvement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.