Abstract

Al–Nb containing mixed oxides were grown by anodizing sputter-deposited Al–Nb alloys of different compositions. A photoelectrochemical investigation was carried out in order to estimate the band gap, flat band potential, and conductivity type of these oxides as a function of their composition. The dependence of the band gap on the composition of mixed sp–d metal oxides has been rationalized by using a semiempirical correlation between the difference of electronegativity and band gap of oxides proposed in the literature some years ago and recently tested for regular d–d metal mixed oxides. The band gap increase observed as a function of Al content into the oxides seems mainly depending on the monotonic shift of the conduction band mobility edge, ECBM, derived from 5d orbitals of Nb5+ in the presence of an almost constant energy location of the valence band mobility edge, EVBM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.