Abstract

Ni doped Cr2O3 (NCO) films have attracted much attention due to their applications in the field of photovoltaics. This study reports the tailoring of structural, electrical and optical properties as a function of Ni doping in Chromium oxide (Cr2O3). NCO thin films were grown by Pulsed laser deposition (PLD) using 2nd harmonic Nd:YAG Laser on n-Si (100) with in-situ annealing of 450 °C. Structural analyses based on X-ray diffractometry (XRD) and Raman Spectroscopy showed the inconsistent variation in crystallinity and shift in A1g band in turn revealing the successful incorporation of Ni into Chromium oxide host lattice. In addition, electrical measurements also showed an inconsistent variation in resistivity ranging from 102 to 104Ω−cm. The properties showed widening of band gap energy (Eg) from 3.41 to 3.60 eV as a function of Ni doping concentration with significantly decreased reflectance in the range of 500–600 nm thereby increasing the absorption, a pre-requisite for solar absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.