Abstract
Ni doped ZnO thin films with oxygen deficiency have been synthesized on glass substrates by radio frequency magnetron sputtering technique using argon plasma. The combined effect of point defects generated due to oxygen vacancies and Ni doping on the optical and electrical properties of ZnO thin films has been studied in this work. Ni doping concentrations were varied and the structural, optical and electrical properties of the films were studied as a function of doping concentrations. The films were characterized with X-ray diffractometer, UV–Vis–NIR spectrophotometer, X-ray photoelectron spectroscopy, atomic force microscopy and electrical conductivity measurements. Oxygen deficient point defects (Schottky defects) made the ZnO thin film highly conducting while incorporation of Ni dopant made it more functional regarding their electrical and optical properties. The films were found to have tunable electrical conductivity with Ni doping concentrations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have