Abstract

Renewable chemical productions through carbon-neutral design are widely concerned in recent years. Among all, itaconic acid (IA) is one of the most important building block chemicals from biorefinery. However, IA fermentation by the eukaryotic Aspergillus terreus is time-consuming and less productive. The whole-cell (WC) bioconversion, proposed as an alternative approach by transforming citrate into IA via two key enzymes of aconitase (ACN, EC 4.2.1.3) and cis-aconitate decarboxylase (CAD, EC 4.1.1.6), is attractive. In this study, we screened the best genes from genes library, studied the kinetics parameters of ACN from Corynebacterium glutamicum (Cg) and CAD from Aspergillus terreus (At), thus achieving the maximum IA production. The catalytic activity of CgAcnA was 39-fold of AtCadA, indicating CAD was the rate-determining step. For metal ions effect, copper and ferric ions inhibited 95% and 59% enzyme activity when both enzymes co-worked together. Finally, the engineered Escherichia coli expressing dual genes and cultured in glycerol-included medium reached the highest IA titer of 67 g/L and productivity of 8.375 g/L/h, which demonstrates as a promising renewable process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.