Abstract

Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nanoscale organization of poly(methyl methacrylate)-grafted nanoparticles (PMMA-g-NPs) in PMMA matrices is examined via small-angle X-ray scattering (SAXS). SAXS data indicate that all nanocomposites exhibit particle–particle interactions, indicating that nanoparticles are locally clustered. Additionally, increasing the loading level of PMMA-g-NPs produces modest changes in Tg but significant increases in the complex viscosity and storage modulus, suggesting that the number density of entanglements between graft chains and the matrix polymer increases with increasing PMMA-g-NP content. Increasing the number density of entanglements and the formation of localized clusters manifest at the macroscale: Dynamic mechanic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.