Abstract
Coevaporation of formamidinium lead iodide (FAPbI3) is a promising route for the fabrication of highly efficient and scalable optoelectronic devices, such as perovskite solar cells. However, it poses experimental challenges in achieving stoichiometric FAPbI3 films with a cubic structure (α-FAPbI3). In this work, we show that undesired hexagonal phases of both PbI2 and FAPbI3 form during thermal evaporation, including the well-known 2H-FAPbI3, which are detrimental for optoelectronic performance. We demonstrate the growth of α-FAPbI3 at room temperature via thermal evaporation by depositing phosphonic acids (PAc) on substrates and subsequently coevaporating PbI2 and formamidinium iodide. We use density-functional theory to develop a theoretical model to understand the relative growth energetics of the α and 2H phases of FAPbI3 for different molecular interactions. Experiments and theory show that the presence of PAc molecules stabilizes the formation of α-FAPbI3 in thin films when excess molecules are available to migrate during growth. This migration of molecules facilitates the continued presence of adsorbed organic precursors at the free surface throughout the evaporation, which lowers the growth energy of the α-FAPbI3 phase. Our theoretical analyses of PAc molecule-molecule interactions show that ligands can form hydrogen bonding to reduce the migration rate of the molecules through the deposited film, limiting the effects on the crystal structure stabilization. Our results also show that the phase stabilization with molecules that migrate is long-lasting and resistant to moist air. These findings enable reliable formation and processing of α-FAPbI3 films via vapor deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.