Abstract

Reversible field-induced phase transitions define antiferroelectric perovskite oxides and lay the foundation for high-energy storage density materials, required for future green technologies. However, promising new antiferroelectrics are hampered by transition´s irreversibility and low electrical resistivity. Here, we demonstrate an approach to overcome these problems by adjusting the local structure and defect chemistry, delivering NaNbO3-based antiferroelectrics with well-defined double polarization loops. The attending reversible phase transition and structural changes at different length scales are probed by in situ high-energy X-ray diffraction, total scattering, transmission electron microcopy, and nuclear magnetic resonance spectroscopy. We show that the energy-storage density of the antiferroelectric compositions can be increased by an order of magnitude, while increasing the chemical disorder transforms the material to a relaxor state with a high energy efficiency of 90%. The results provide guidelines for efficient design of (anti-)ferroelectrics and open the way for the development of new material systems for a sustainable future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.