Abstract
It is important to develop effective strategies to construct enzymatic biofuel cell based self-powered biosensors. We report here the facile regulation of enzymatic loading capacity on the bioanode by utilizing a concatenated catalytic hairpin assembly (CHA)/hybridization chain reaction (HCR) and its application for self-powered microRNA-141 (miRNA-141) detection. To construct the bioanode, a concatenated CHA/HCR process triggered by miRNA-141 was conducted on the three-dimensional macroporous gold (3DMG) electrode to generate long double-stranded DNA nanowires for glucose oxidase immobilization. Quartz crystal microbalance study reveals that the enzymatic loading capacity on the bioanode increases at an increasing miRNA-141 concentration, leading to enhanced catalytic performance for glucose oxidation. The short-circuit currents of the assembled glucose/O2 biofuel cells increase at increasing miRNA-141 concentrations, enabling ultrasensitive detection of miRNA-141. The self-powered biosensor features a wide dynamic range for detecting miRNA-141 from 10−17 to 10−11 M, with an ultralow detection limit of 1.3 aM. This work provides a highly sensitive self-powered biosensing platform for miRNA detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have