Abstract
Over the past decade, there has been a dramatic increase in the number of studies focused on sensors for cysteine (Cys) as a crucial factor in physiological function and disease diagnosis. Among those sensors, nanomaterial-based peroxidase mimetics have received particular attention from researchers. This study introduces a new series of mesoporous silica nanoparticles (MSNs) incorporated with iron and cobalt (Co/Fe-MSN) with a molar ratio of Si/Fe = 10 and cobalt species at 1, 3, and 5 wt% that have great potential in the sensing application. These nanomaterial characterization was investigated by FTIR spectroscopy, SEM, TEM, XRD, and nitrogen adsorption-desorption. The peroxidase activity of these nanomaterials was studied through kinetic analysis. The findings revealed that Co/Fe-MSN (1%) showed higher peroxidatic activity than the others towards the common chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt. Based on the enzymatic activity of Co/Fe-MSN (1%), a colorimetric sensing platform was designed to detect H2O2 and Cys. The limit of detection (LOD) for H2O2 and Cys was determined to be 1.1 μM and 0.89 nM, respectively. The results indicated that the proposed enzyme mimic exhibited excellent potential as a sensor in medical diagnostics and biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.