Abstract

The formidable sustainability challenges in advancing energy storage technologies call for game-changing research in battery designs. The previous pursuing of novel cathode materials with high redox potentials impedes the vast applications due to the simultaneous electrolyte decomposition at high potentials, though they are expected to deliver high specific capacities. Eventually, people start thinking in an opposite way, desirable anode materials with low redox potentials can also own high specific capacities. Among all the promising candidates, phosphorus-based anodes in sodium ion batteries (SIBs) have received considerable attention owing to the low cost and relatively high natural abundance of phosphorus. More importantly, phosphorus can store three sodium atoms and enable a high theoretical capacity of 2596 mAh g−1, which overwhelms any other SIB anode currently available. However, the poor electronic conductivity and large volume change of phosphorus during cycling severely deteriorate battery performance. The most widely used strategy is to confine phosphorus within well-designed carbon hosts. We thereby introduce a new type of porous hollow carbon with conductive-network interior as phosphorus host, which not only improves the electrical conductivity, but also creates enough interior surface for maximizing phosphorus utilization and shortening the ion's diffusion distance, compared to those conventional hollow carbon hosts. Therefore, the as-prepared red phosphorus-carbon spheres composites (RP/CS) exhibit superior rate performance (~1083 mAh g−1 at 4 A g−1, ~837 mAh g−1 even at 8 A g−1) and excellent cycle life (1027 mAh g−1 at 4 A g−1 more than 2000 cycles).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call