Abstract
Hexagonal boron nitride (hBN) thin films were grown by plasma-enhanced chemical beam epitaxy (PE-CBE) on epitaxial graphene (EG) on macrostepped 4°-offcut 4H-SiC(0001) substrates. The choice of growth conditions in this system allowed for two prominent in-plane hBN/EG rotational alignments: a direct alignment of the hBN and EG lattices or a 30° in-plane rotational twist such that the ⟨112¯0⟩hBN and ⟨101¯0⟩EG directions are parallel. The use of nitrogen plasma in conjunction with borazine at growth temperatures of 1450 °C increased the crystallinity of the few-monolayer-thick films relative to films grown by CBE without plasma exposure. In vacuo x-ray photoelectron spectroscopy showed that films grown with nitrogen plasma exposure were stoichiometric to nitrogen-rich, depending on growth conditions, and exhibited no bonding indicative of additional phase formation. This PE-CBE process was shown to produce films with atomically abrupt interfaces between the hBN and EG lattices, as determined by cross-sectional transmission electron microscopy (TEM). Annular dark field and bright field scanning TEM paired with energy dispersive x-ray spectroscopy confirmed that the EG persisted throughout this deposition and no intercalative growth of hBN under the EG was detected. Higher PE-CBE growth rates produced hBN domains that nucleated uniformly across the substrate with little preferred orientation of their edges. In comparison, lower growth rates appeared to cause preferential nucleation on the macrostep edges with a 30° in-plane rotation relative to the EG, as confirmed by cross-sectional TEM. By correlating the hBN nuclei shape in AFM to the atomic registry of the hBN to the substrate, it was found that the triangular, macrostep-edge nuclei were arm-chair edge terminated. The ability to select different rotational alignments by changing epitaxial growth conditions may be used in future wafer-scale growth of hBN/graphene heterostructures to achieve varying degrees of graphene band structure modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.