Abstract

The photoactive material was of significant importance in organic photoelectrochemical transistor (OPECT) bioanalysis as it influences the photoinduced voltage and the μC* product, resulting in a varying sensor sensitivity. The utilization of metal-organic frameworks (MOFs) as photoactive materials in OPECT analysis is promising, yet it remains a grand challenge due to the inherently narrow light absorption range and high electron-hole recombination rate. Herein, Pd NPs were encapsulated as electron acceptors into the Cu-MOF using a double-solvent method, followed by pyrolysis at the proper temperature. After pyrolysis, Cu-MOF transformed into a carbon defect-rich composite of CuO and Cu2O while retaining its high porosity and structural morphology. The resulting carbon defect-rich pyrolysis Cu-MOF (p-Cu-MOF) served as an active support, facilitating the separation of electrons and holes. The photoelectrons trigger the electron transfer of adjacent active metal components and the formation of a Schottky junction between Pd and the MOFs. This effect induces the electron donation from the MOFs. Moreover, Pd/pyrolysis Cu-MOF exhibits significantly higher visible light absorption, better water stability, and higher electrical conductivity compared to Cu-MOF and Pd/Cu-MOF. An OPECT sensor was fabricated by utilizing Pd/p-Cu-MOF as the photoactive material and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the channel material on an integrated laser-etched FTO. The aptamer was used as the recognition element, enabling sensitive and efficient detection of residual isocarbophos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call