Abstract

Protein delivery is of central importance for both diagnostic and therapeutic applications. However, protein delivery faces challenges including poor endosomal escape and thus limited efficiency. Here, we report the facile construction and screening of a small library of cationic helical polypeptides for cytosolic protein delivery. The library is based on a random copolymer poly(γ-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}esteryl-L-glutamate)-randompoly(γ-6-chlorohexyl-L-glutamate)[P(EG3-r-ClC6)Glu], which is then modified with various pyridine derivatives and alkyl thiols. Flow Cytometry, confocal laser scanning microscopy, and viability assay collaboratively identify two leading polymers, showing efficient delivery of enhanced green fluorescent protein(eGFP) and low cytotoxicity. This finding is further validated by the cytosolic delivery of RNase A and cytochrome C(Cyt C) to HeLa cells in the viability assay. Together, this work demonstrates that high-throughput screening is an effective and viable approach to the selection of cationic helical polypeptides for the cytosolic delivery of functional proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.