Abstract
Rational design of efficient cytosolic protein delivery carriers holds enormous promise for biotherapeutics development. Several delivery systems have been developed during the past decades, while tailoring the balance between extracellular protein binding and intracellular cargo release is still challenging. In this study, we synthesized a series of oxygen-sensitive reactive polymers, rich in boron, by radical polymerization and post-modification for cytosolic protein delivery in vitro and in vivo. The introduction of boronate building blocks into the polymer scaffold significantly enhanced its protein binding affinity, and the polymer/protein complexes with high stability were obtained by tailoring the molecular ratios between the boronate ligands and the amine groups. The lead material screened from the polymer library exhibited efficient protein delivery efficacy that can release cargo proteins in cytosol in a reactive oxygen species responsive manner, which enables intracellular delivery of proteins with maintained bioactivity. In addition, the polymer-based nanoformulations efficiently delivered saporin, a toxin protein, into osteosarcoma cells and tumor tissues, and exhibited high therapeutic efficacy in an osteosarcoma mouse model. The synthesized polymer in this study can be developed as a promising nanocarrier for cytosolic delivery of protein therapeutics to treat a variety of diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have