Abstract

Polycyclic aromatic hydrocarbons exhibit a rich spectrum of physicochemical properties depending on the size and, more critically, on the edge and bond topologies. Among them, open-shell systems-molecules hosting unpaired electron densities-represent an important class of materials for organic electronic, spintronic, and optoelectronic devices, but remain challenging to synthesize in solution. We report the on-surface synthesis and scanning tunneling microscopy- and spectroscopy-based study of two ultralow-gap open-shell molecules, namely peri-tetracene, a benzenoid graphene fragment with zigzag edge topology, and dibenzo[ a, m]dicyclohepta[ bcde, nopq]rubicene, a nonbenzenoid nonalternant structural isomer of peri-tetracene with two embedded azulene units. Our results provide an understanding of the ramifications of altered bond topologies at the single-molecule scale, with the prospect of designing functionalities in carbon-based nanostructures via engineering of bond topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.