Abstract

Immunotherapy stands as a groundbreaking strategy for cancer treatment, due to its ability to precisely and safely detect and eradicate tumors. However, the efficacy of immunotherapy is often limited by tumor autophagy, a natural defense mechanism that tumors exploit to resist immune attacks. Herein, we introduce a spatiotemporally controlled method to modulate tumor autophagy via sonocatalysis, aiming to improve immunotherapeutic outcomes. Specifically, we synthesized a tumor-targeting nanocatalyst based on a semiconductor heterojunction composed of Barium Titanate (BTO), Black Phosphorus (BP) integrated with Hyaluronic Acid (HA), referred to as BTO/BP-HA. Compared to traditional catalysts, the heterojunction structure enhances energy band bending and rapid electron-hole separation under ultrasonic stimulation, splitting water to generate H2. This promotes tumor cell apoptosis by inhibiting mitochondrial respiration and induces immunogenic cell death, triggering immune responses to eliminate tumor cells. However, the concurrent activation of autophagy mitigates the cytotoxic effectiveness of nanocatalysts. Within the nanocatalyst, BP undergoes lysosomal degradation to generate PO43-, which subsequently interacts with H+ to generate a conjugated acidic anion, increasing the lysosomal pH. This research ingeniously combines sonocatalysis with tumor autophagy, disrupting the activity of acidic hydrolases to inhibit autophagy, thereby enhancing the immune response and improving the effectiveness of immunotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.