Abstract

AbstractBlock copolymers offer the fabrication of mesoporous thin films with distinct nanoscale structural features. In this contribution, we present the use of acetic acid (CH3COOH) as a low‐molecular‐weight guest molecule to tune the supramolecular assembly of poly[styrene‐block‐(4‐vinylpyridine)] (PS‐b‐P4VP), offering a versatile and straightforward method to obtain tailored nanostructured films with controlled topography and pore size. Spin‐coating toluene solutions of PS‐b‐P4VP, with a variable amount of CH3COOH, leads to micellar thin films, where the micelles contain the carboxylic acid as a guest molecule. The size can be conveniently modified in these films (from 48 to 75 nm) by varying the amount of organic acid in the starting solutions. Subsequent surface reconstruction of micellar films using ethanol leads to ring‐shaped copolymer nanoporous films with modulated diameter. Controlling the micelle reconstruction process, cylindrical porous films are also obtained. Interestingly, changing the type of aliphatic carboxylic acid leads to a modification of the observed film morphology from micelles to out‐of‐plane P4VP cylinders (or lamellae) in a PS matrix. © 2019 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.