Abstract
Anomalous Hall effect (AHE) is one of the most fascinating topics in condensed matter physics related to spin–orbit coupling (SOC). In this paper, we report on the AHE of high-quality epitaxial Au/Fe4N bilayer films, which were grown by a plasma-assisted molecular beam epitaxy system. A scaling involving multiple competing scattering mechanisms and a shunting model were adopted to analyze the AHE in detail. Compared with Fe4N single layers and Cu/Fe4N bilayers, the AHE of Au/Fe4N bilayers is dramatically modified by strong SOC of the Au layer. Analysis has shown that aside from extra scatterings from Au atoms that diffused from an Au layer to a Fe4N layer, both spin Hall effect of Au and magnetic proximity effect near the Au/Fe4N interface contribute to the modification of the AHE. Variation of coercivity with the change of current, which could be attributed to spin–orbit torque, implies that the measured AHE is a combination of the AHE of Fe4N and strong SOC of Au.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.