Abstract
Abstract2D carbon nanosheets are considered to be promising candidates for use as sodium ion battery (SIB) anodes due to their large specific surface area and excellent electronic conductivity. However, their applications are hampered by inferior cycling performance, insufficient storage capacity, and high cost. N, B co‐doping carbon nanosheets (NBTs) are synthesized using biomass‐based gelatin as carbon precursor and boric acid as template, and demonstrate their great potential as high‐performance SIB anodes in practical applications. The synergistic effect of heteroatom doping and ultrathin 2D structure provides the NBTs with abundant defects, active sites, and short ion/electron transfer distance, which favors and improves the storage capabilities and rate performances. The optimized NBTs present a remarkable cyclability and superb rate capability (309 mAh g−1 at 0.2 A g−1 for 200 cycles; 225 mAh g−1 at 1 A g−1 for 2000 cycles). Meanwhile, the Na storage mechanism is proved to be a pseudocapacitive‐controlled process, which accounts for the fast charge/discharge behaviors. This work demonstrates an effective template method to produce 2D heteroatoms co‐doping carbon nanosheets to achieve excellent Na storage performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.