Abstract

For many applications in photonics, e.g., free-space telecommunication, efficient UV sources are needed. However, optical excitation of such sources requires photons of even higher energies, which are difficult to integrate into photonic circuits. Here, we present photonic crystal devices based on zinc oxide (ZnO) that allow excitation using highly abundant sources in the near-infrared (NIR). These devices offer control of generating tailored photonic modes in the UV range via higher order nonlinear processes by combining the wide electronic band gap and pronounced nonlinear effects in ZnO with the adjustable properties of photonic crystal (PhC) membranes. Two different techniques for fabricating such ZnO-based PhC membranes are discussed, including the presentation of a novel bottom-up approach. Furthermore, dispersive theoretical simulations are introduced to determine the size and position of the photonic band gap, leading to an optimized cavity with only one dominant mode. This is followed by an evalu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.