Abstract
AbstractLithium‐oxygen batteries are considered a next‐generation technology owing to their extremely high theoretical energy density despite many challenges such as low round‐trip efficiency and poor cyclability. The air‐cathode structure and pore properties play a key role in solving these problems. In this study, we fabricate ZnCo2O4 nanofibers and design a porous nanostructure using a facile electrospinning process and selective etching of ZnO as the cathode material in lithium‐oxygen batteries. First, non‐porous ZnCo2O4 nanofiber electrodes accomplish high catalytic activity and good cycling stability during 116 cycles with a limited capacity of 1000 mA h g−1 at a current density of 500 mA g−1. For enhanced catalytic activity and cyclability, ZnO included ZnCo2O4 nanofibers are prepared using a Zn‐excess electrospun solution and porous ZnCo2O4 nanofibers are fabricated via selective etching of ZnO. Porous ZnCo2O4 nanofiber electrodes exhibit excellent electrocatalytic activity and cyclability for 226 cycles with a limited capacity of 1000 mA h g−1 at a current density of 500 mA g−1. The exceptional catalytic properties explain the synergistic effect of the one‐dimensional nanostructure and porous structure with an appropriate pore diameter, providing a large active site and an efficient electron pathway during the Li2O2 formation/decomposition process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have