Abstract
In the presented work solvent-free film preparation from tailored molecular glass resists, their thermal analysis, the characterization of etch resistance for plasma etching transfer processes, and the evaluation of the patterning performance using scanning probe lithography (SPL) tools, in particular electric field and thermal based SPL, are demonstrated. Therefore a series of fully aromatic spiro-based and tris-substituted twisted resist materials were systematically investigated. The materials feature very high glass transition temperatures of up to 173 °C, which allows solvent-free thin film preparation by physical vapor deposition (PVD) due to their high thermal stability. The PVD prepared films offer distinct advantages compared to spin coated films such as no pinholes, defects, or residual solvent domains, which can locally affect the film properties. In addition, PVD prepared films do not need a post apply bake (PAB) and can be precisely prepared in the nanometer range layer thickness. An observed sufficient plasma etching resistance is promising for an efficient pattern transfer even by utilizing only 10 nm thin resist films. Their lithographic resolution potential is demonstrated by a positive and a negative tone patterning using electric field, current controlled scanning probe lithography (EF-CC-SPL) at the Technical University of Ilmenau or thermal scanning probe lithography (tSPL) investigations at the IBM Research - Zurich. High resolution tSPL prepared patterns of 11 nm half pitch and at 4 nm patterning depth are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.