Abstract

Abstract In this paper, we propose a class of new tailored finite point methods (TFPM) for the numerical solution of parabolic equations. Our finite point method has been tailored based on the local exponential basis functions. By the idea of our TFPM, we can recover all the traditional finite difference schemes. We can also construct some new TFPM schemes with better stability condition and accuracy. Furthermore, combining with the Shishkin mesh technique, we construct the uniformly convergent TFPM scheme for the convection-dominant convection-diffusion problem. Our numerical examples show the efficiency and reliability of TFPM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.